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ABSTRACT

The enantioselective [2 + 2] cycloaddition of alkynes possessing an ester functionality and norbornene derivatives proceeded efficiently
using a chiral rhodium catalyst. The chiral tri- and tetracyclic cyclobutenes were obtained in moderate to high ee.

Transition-metal-catalyzed cycloaddition of unsaturated mo-
tifs, such as alkynes, alkenes, etc., which is represented by
[m+ n] or [l + m+ n] cycloaddition, is an atom-economical
and reliable protocol for the synthesis of carbo- and
heterocyclic skeletons.1 Various types of cycloadditions have
been reported for the construction of complex multicyclic
compounds.2 The advantage of transition-metal-catalyzed
cycloaddition is that it can be readily applied as an asym-
metric version because direct coordination of the reaction
site to the chiral transition-metal complex gives high enan-
tioselectivity. Our group has also described highly enantio-
selective [2+ 2 + 1] and [2+ 2 + 2] cycloadditions using
chiral Ir and Rh complexes as catalysts.3

We report here the Rh-catalyzed enantioselective [2+ 2]
cycloaddition of alkynyl esters and norbornene derivatives
for the synthesis of chiral cyclobutenes.4 There are a few
examples of the transition-metal-catalyzed [2+ 2] cycload-

dition of alkynes and alkenes, compared with other types of
cycloadditions: ever since a pioneering work on the Ru-
catalyzed [2 + 2] cycloaddition of alkynes with ester
functionalities and norbornene derivatives,5 only Pd-,6 Ni-,7

and Co-catalyzed8 reactions have been described.9 Recently,
Ru-catalyzed [2+ 2] cycloaddition of various alkynes has
been studied comprehensively,10 including a diastereoselec-
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tive [2 + 2] cycloaddition using chiral alkynes.11 However,
to the best of our knowledge, there has been no example of
a catalytic and enantioselective [2+ 2] cycloaddition for
the synthesis of chiral cyclobutenes, except for only two
examples of the chiral Lewis acid catalyzed [2+ 2]
cycloadditions of alkynyl sulfides and electron-deficient
alkenes.12

During our study of enantioselective transition-metal-
catalyzed cycloadditions using alkynes as unsaturated motifs,
we considered that active Rh complexes could be used to
realize [2+ 2] cycloaddition: for comparison with previous
examples, we chose the reaction of an alkynyl ester and
norbornene and examined various rhodium complexes. As
a result, cationic Rh complexes with phosphine ligands were
found to be efficient catalysts13 (Table 1): in the presence
of chiral Rh catalyst, which was prepared in situ from [Rh-
(cod)2]BF4 and BINAP, the [2+ 2] coupling of methyl
3-phenylpropiolate with norbornene proceeded in refluxed
1,2-dichloroethane (DCE), and a chiral cyclobutene1a was
obtained in high yield with moderate ee14 (entry 1). Among
the chiral diphosphine ligands of BINAP derivatives that we
examined, H8-BINAP was the best choice (entries 1-5).15

In the case of benzyl andtert-butyl esters, the enantioselec-
tivity apparently decreased (entries 6 and 7). Moreover, the
reaction of alkynyl ketone proceeded to give a cycloadduct
in high yield, but the ee was very poor. (entry 8). On the

contrary, the reaction of propargyl ether sluggishly pro-
ceeded; however, the ee was slightly improved (entry 9).
These results suggest that the electron-deficient moiety on
an alkyne terminus is important to promote the [2+ 2]
cycloaddition and that etheric oxygen atom plays a pivotal
role in asymmetric induction in the present Rh-catalyzed
enantioselective [2+ 2] cycloaddition.

Next, the chiral catalyst [Rh(cod)(H8-binap)]BF4 was
isolated and subjected to the enantioselective [2+ 2]
cycloaddition of methyl 3-phenylpropiolate and norbornene:
cyclobutene1a was obtained at 60°C with a higher ee of
80% (Table 2, entry 1).16 Under the present reaction
conditions, various methyl 3-arylpropiolates were examined
as a coupling partner for norbornene. A 4-methoxyphenyl
substituent on an alkyne terminus realized further higher
enantioselectivity, and the corresponding cyclobutene1b was
obtained almost quantitatively with 90% ee using 10 mol %
catalyst (entry 2). The reactions of 3-methoxyphenyl- and
2-methoxyphenyl-substituted alkynes also proceeded to give
cycloadducts in excellent yield; however, the ee was not
sufficiently high (entries 3 and 4). An electron-donating
group at the para position apparently induced better enan-
tioselectivity, and the coupling of methyl 3-(4-methylphenyl)-
propiolate gave cycloadduct1ein higher ee (entry 5). Methyl
3-(3-methylphenyl)propiolate also gave cycloadduct1f in
good ee (entry 6). Electron-withdrawing groups, such as
bromo and ethoxycarbonyl groups, could be tolerated as a
substituent on the benzene ring, and chiral cyclobutenes1g,
h were obtained in good to high yield with moderate ee
(entries 7, 8). The reaction of alkynyl naphthalene was very
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Table 1. Screening of Various Reaction Conditions

entrya R ligandb time/h yield/% ee/%

1 CO2Me BINAP 9 93 66
2 CO2Me tolBINAP 9 87c 65
3 CO2Me xylylBINAP 6 quant 51
4 CO2Me H8-BINAP 9 quant 73
5 CO2Me SEGPHOS 9 ca. 30c 67
6 CO2Bn H8-BINAP 4 82 48
7 CO2-t-Bu H8-BINAP 9 61c 32
8 C(O)Me H8-BINAP 12 94 14
9 CH2OMe H8-BINAP 60 59c 26

a Alkyne/norbornene is 1/5.b S-Isomers were used as chiral ligands.
c Alkynes were not completely consumed.

Table 2. [2 + 2] Cycloaddition of Various Arylpropiolates

entrya R time/h yield/% ee/%

1 H 24 85 (1a) 80
2b 4-OMe 6 98 (1b) 90
3 3-OMe 18 96 (1c) 78
4 2-OMe 72 quant (1d) 55
5 4-Me 24 97 (1e) 86
6b 3-Me 4 92 (1f) 82
7b 4-Br 24 91 (1g) 74
8 4-CO2Et 24 83 (1h) 58
9 2,3-benzo 96 54 (1i) 63

a Alkyne/norbornene is 1/5.b The amount of catalyst is 10 mol %.
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slow, but the corresponding cycloadduct1i was obtained in
moderate ee (entry 9).

We further examined alkyl-substituted propiolates as a
coupling partner for norbornene (Table 3). The [2+ 2]
cycloaddition of methyl but-2-ynoate proceeded under reflux
conditions using Rh-H8-BINAP catalyst to give cyclobutene
1j with almost perfect enantioselectivity (entry 1). The [2+
2 + 2] cycloadducts of two but-2-ynoates and norbornene,
including three regioisomers, were obtained as byproducts.
The diluted conditions improved the yield; however, a slight
decrease in ee was observed (entry 2). Methyl hept-2-ynoate
was also a substrate, and cycloadduct1k was obtained in
higher yield with acceptable ee (entry 3).

The reaction of benzonorbornadiene required a higher
temperature (Table 4). As in the case of norbornene, 3-(4-
methoxyphenyl)propiolate achieved higher enantioselectivity
than 3-phenylpropiolate (entries 1 and 2). In the reaction of
but-2-ynoate, the enantioselectivity exceeded 90% (entry 3).

In conclusion, we developed the Rh-catalyzed [2+ 2]
cycloaddition of alkynyl esters and norbornene derivatives,

and various tri- and tetracyclic cyclobutenes were obtained
in good to excellent yield. The chiral Rh-H8-BINAP catalyst
realized moderate to high enantioselectivity. This present
reaction provides a new and facile protocol for the construc-
tion of chiral cyclobutenes.
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Table 3. [2 + 2] Cycloaddition of Alkyl-Substituted
Propiolates

entrya R time/h yield/% ee/%

1 Me 1 55 (1j) 99
2b Me 1 64 (1j) 93
3b Bu 2 87 (1k) 73

a Alkyne/norbornene is 1/2.b The quadruple volume of solvent (8 mL)
was used (see ref 16).

Table 4. [2 + 2] Cycloaddition of Benzonorbornadiene

entrya R time/h yield/% ee/%

1 C6H5 10 92 (2a) 79
2b 4-MeOC6H4 5 95 (2b) 87
3 Me 2 68 (2j) 94

a Alkyne/benzonorbornadiene is 1/2.b The amount of catalyst is 10 mol
%.
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