Rh-Catalyzed Enantioselective [2 + 2] Cycloaddition of Alkynyl Esters and Norbornene Derivatives

2006 Vol. 8, No. 7 1343–1345

ORGANIC LETTERS

Takanori Shibata,* Kyoko Takami, and Ai Kawachi

Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan

tshibata@waseda.jp

Received January 9, 2006

ABSTRACT

The enantioselective [2 + 2] cycloaddition of alkynes possessing an ester functionality and norbornene derivatives proceeded efficiently using a chiral rhodium catalyst. The chiral tri- and tetracyclic cyclobutenes were obtained in moderate to high ee.

Transition-metal-catalyzed cycloaddition of unsaturated motifs, such as alkynes, alkenes, etc., which is represented by [m + n] or [l + m + n] cycloaddition, is an atom-economical and reliable protocol for the synthesis of carbo- and heterocyclic skeletons.¹ Various types of cycloadditions have been reported for the construction of complex multicyclic compounds.² The advantage of transition-metal-catalyzed cycloaddition is that it can be readily applied as an asymmetric version because direct coordination of the reaction site to the chiral transition-metal complex gives high enantioselectivity. Our group has also described highly enantioselective [2 + 2 + 1] and [2 + 2 + 2] cycloadditions using chiral Ir and Rh complexes as catalysts.³

We report here the Rh-catalyzed enantioselective [2 + 2] cycloaddition of alkynyl esters and norbornene derivatives for the synthesis of chiral cyclobutenes.⁴ There are a few examples of the transition-metal-catalyzed [2 + 2] cycload-

dition of alkynes and alkenes, compared with other types of cycloadditions: ever since a pioneering work on the Rucatalyzed [2 + 2] cycloaddition of alkynes with ester functionalities and norbornene derivatives,⁵ only Pd-,⁶ Ni-,⁷ and Co-catalyzed⁸ reactions have been described.⁹ Recently, Ru-catalyzed [2 + 2] cycloaddition of various alkynes has been studied comprehensively,¹⁰ including a diastereoselec-

 ^{(1) (}a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M.; Krische,
 M. J. Synlett 1998, 1. (c) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.

^{(2) (}a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. *Chem. Rev.* **1996**, *96*, 635. (b) Aubert, C.; Buisine, O.; Malacria, M. *Chem. Rev.* **2002**, *102*, 813. (c) Nakamura, I.; Yamamoto, Y. *Chem. Rev.* **2004**, *104*, 2127.

^{(3) (}a) Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852. (b) Shibata, T.; Toshida, N.; Takagi, K. Org. Lett. 2002, 4, 1619. (c) Shibata, T.; Toshida, N.; Takagi, K. J. Org. Chem. 2002, 67, 7446. (d) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am. Chem. Soc. 2004, 126, 8382. (e) Shibata, T.; Toshida, N.; Yamasaki, M.; Maekawa, S.; Takagi, K. Tetrahedron 2005, 61, 9974. (f) Shibata, T.; Arai, Y.; Tahara, Y. Org. Lett. 2005, 7, 4955. (g) Shibata, T.; Tsuchikama, K. Chem. Commun. 2005, 6017.

⁽⁴⁾ To the best of our knowledge, there has been no example of Rhcatalyzed [2 + 2] cycloaddition of an alkyne and an alkene for the construction of cyclobutene skeleton; however, Rh-catalyzed dimerization of norbornene, which is [2 + 2] cycloaddition of alkenes, was reported: Mrowca, J. J.; Katz, T. J. J. Am. Chem. Soc. **1966**, 88, 4012.

^{(5) (}a) Mitsudo, T.; Kokuryo, K.; Takegami, Y. J. Chem. Soc., Chem. Commun. **1976**, 722. (b) Mitsudo, T.; Kokuryo, K.; Shinsugi, T.; Nakagawa, Y.; Watanabe, Y.; Takegami, Y. J. Org. Chem. **1979**, 44, 4492. (c) Mitsudo, T.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y. Angew. Chem., Int. Ed. Engl. **1994**, 33, 580.

⁽⁶⁾ Trost, B. M.; Yanai, M.; Hoogsteen, K. J. Am. Chem. Soc. 1993, 115, 5294.

⁽⁷⁾ Huang, D.-J.; Rayabarapu, D. K.; Li, L.-P.; Sambaiah, T.; Cheng, C.-H. Chem. Eur. J. **2000**, *6*, 3706.

⁽⁸⁾ Chao, K. C.; Rayabarapu, D. K.; Wang, C.-C.; Cheng, C.-H. J. Org. Chem. 2001, 66, 8804.

⁽⁹⁾ Intramolecular [2 + 2] cycloaddition of allenynes: (a) Shen, Q.; Hammond, G. B. *J. Am. Chem. Soc.* **2002**, *124*, 6534. (b) Brummond, K. M.; Chen, D. *Org. Lett.* **2005**, *7*, 3473.

^{(10) (}a) Jordan, R. W.; Tam, W. Org. Lett. 2000, 2, 3031. (b) Jordan, R. W.; Tam, W. Org. Lett. 2001, 3, 2367. (c) Jordan, R. W.; Tam, W. Tetrahedron Lett. 2002, 43, 6051. (d) Tenaglia, A.; Giordano, L. Synlett 2003, 2333. (e) Jordan, R. W.; Khoury, P. R.; Goddard, J. D.; Tam, W. J. Org. Chem. 2004, 69, 8467. (f) Villeneuve, K.; Riddell, N.; Jordan, R. W.; Ku; Tam, W. Org. Lett. 2004, 6, 4543. (g) Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681.

Δ	∦ + ∥ Pr	[Rh(cod) ₂]BF (5 mol DCE, re	4+ ligand %) eflux	A	Ph
$entry^a$	R	$ligand^b$	time/h	yield/%	ee/%
1	$\rm CO_2Me$	BINAP	9	93	66
2	$\rm CO_2Me$	tolBINAP	9	87^c	65
3	$\rm CO_2Me$	xylylBINAP	6	quant	51
4	$\rm CO_2Me$	H_8 -BINAP	9	quant	73
5	$\rm CO_2Me$	SEGPHOS	9	ca. 30^{c}	67
6	$\rm CO_2Bn$	H_8 -BINAP	4	82	48
7	CO ₂ - <i>t</i> -Bu	H_8 -BINAP	9	61^c	32
8	C(O)Me	H_8 -BINAP	12	94	14
9	$\mathrm{CH}_2\mathrm{OMe}$	H_8 -BINAP	60	59^c	26
^a Alkyn ^c Alkynes	e/norbornene were not com	is 1/5. ^b S-Isomer pletely consumed.	rs were use	ed as chiral	ligands

tive [2 + 2] cycloaddition using chiral alkynes.¹¹ However, to the best of our knowledge, there has been no example of a catalytic and enantioselective [2 + 2] cycloaddition for the synthesis of chiral cyclobutenes, except for only two examples of the chiral Lewis acid catalyzed [2 + 2]cycloadditions of alkynyl sulfides and electron-deficient alkenes.¹²

During our study of enantioselective transition-metalcatalyzed cycloadditions using alkynes as unsaturated motifs, we considered that active Rh complexes could be used to realize [2+2] cycloaddition: for comparison with previous examples, we chose the reaction of an alkynyl ester and norbornene and examined various rhodium complexes. As a result, cationic Rh complexes with phosphine ligands were found to be efficient catalysts¹³ (Table 1): in the presence of chiral Rh catalyst, which was prepared in situ from [Rh- $(cod)_2$]BF₄ and BINAP, the [2 + 2] coupling of methyl 3-phenylpropiolate with norbornene proceeded in refluxed 1,2-dichloroethane (DCE), and a chiral cyclobutene 1a was obtained in high yield with moderate ee¹⁴ (entry 1). Among the chiral diphosphine ligands of BINAP derivatives that we examined, H_8 -BINAP was the best choice (entries 1–5).¹⁵ In the case of benzyl and tert-butyl esters, the enantioselectivity apparently decreased (entries 6 and 7). Moreover, the reaction of alkynyl ketone proceeded to give a cycloadduct in high yield, but the ee was very poor. (entry 8). On the

Table 2. [2 + 2] Cycloaddition of Various Arylpropiolates CO₂Me [Rh(cod)(H₈-binap)]BF₄ CO₂Me (5 mol %) DCE, 60 °C R time/h yield/% ee/% entry^a Η 2485 (1a) 1 80 2^b 4-OMe 98 (1b) 6 90 3 3-OMe 18 96 (1c) 78 4 2-OMe 72quant (1d) 55 $\mathbf{5}$ 4-Me 24 97 (1e) 86 6^b 3-Me 4 $92\,(1f)$ 82 7^b 4-Br 247491 (**1g**) 8 4-CO₂Et 2483 (1h) 5863 9 2,3-benzo 96 54 (1i) ^a Alkyne/norbornene is 1/5. ^b The amount of catalyst is 10 mol %.

contrary, the reaction of propargyl ether sluggishly proceeded; however, the ee was slightly improved (entry 9). These results suggest that the electron-deficient moiety on an alkyne terminus is important to promote the [2 + 2] cycloaddition and that etheric oxygen atom plays a pivotal role in asymmetric induction in the present Rh-catalyzed enantioselective [2 + 2] cycloaddition.

Next, the chiral catalyst $[Rh(cod)(H_8-binap)]BF_4$ was isolated and subjected to the enantioselective [2 + 2]cycloaddition of methyl 3-phenylpropiolate and norbornene: cyclobutene 1a was obtained at 60 °C with a higher ee of 80% (Table 2, entry 1).¹⁶ Under the present reaction conditions, various methyl 3-arylpropiolates were examined as a coupling partner for norbornene. A 4-methoxyphenyl substituent on an alkyne terminus realized further higher enantioselectivity, and the corresponding cyclobutene 1b was obtained almost quantitatively with 90% ee using 10 mol % catalyst (entry 2). The reactions of 3-methoxyphenyl- and 2-methoxyphenyl-substituted alkynes also proceeded to give cycloadducts in excellent yield; however, the ee was not sufficiently high (entries 3 and 4). An electron-donating group at the para position apparently induced better enantioselectivity, and the coupling of methyl 3-(4-methylphenyl)propiolate gave cycloadduct 1e in higher ee (entry 5). Methyl 3-(3-methylphenyl)propiolate also gave cycloadduct 1f in good ee (entry 6). Electron-withdrawing groups, such as bromo and ethoxycarbonyl groups, could be tolerated as a substituent on the benzene ring, and chiral cyclobutenes 1g, **h** were obtained in good to high yield with moderate ee (entries 7, 8). The reaction of alkynyl naphthalene was very

^{(11) (}a) Villeneuve, K.; Jordan, R. W.; Tam, W. Synlett **2003**, 2123. (b) Villeneuve, K.; Tam, W. Angew. Chem., Int. Ed. **2004**, 43, 610.

^{(12) (}a) Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. J. Am. Chem. Soc. **1992**, 114, 8869. (b) Ito, H.; Hasegawa, M.; Takenaka, Y.; Kobayashi, T.; Iguchi, K. J. Am. Chem. Soc. **2004**, 126, 4520.

⁽¹³⁾ Cationic rhodium complexes are efficient catalysts for various types of cycloadditions: Robinson, J. E. In *Modern Rhodium-Catalyzed Organic Reactions*; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; Chapter 12, p 241.

⁽¹⁴⁾ The obtained ester **1a** was reduced to the corresponding alcohol, whose absolute configuration was determined by the comparison of the sign of the optical rotation (ref 11b), because it was derived from a chiral amide with a chiral auxiliary, whose absolute configuration was determined by the X-ray analysis; see: Lough, A. J.; Villeneuve, K.; Tam, W. Acta Crystallogr. **2004**, *E60*, 01566.

⁽¹⁵⁾ BDPP (ca. 10%, 13% ee) and MeDUPHOS (ca. 5%, 4% ee) were inappropriate chiral ligands for the present reaction.

⁽¹⁶⁾ **Typical Experimental Procedure.** Under an atmosphere of argon, [Rh(cod)((*S*)-H₈-binap)]BF₄ (9.3 mg, 0.010 mmol) was stirred in degassed 1,2-dichloroethane (0.4 mL) at room temperature to give a yellow solution. Then methyl 3-phenylpropiolate (32.0 mg, 0.20 mmol) and norbornene (94.2 mg, 1.00 mmol) in 1,2-dichloroethane (1.6 mL) were added to the solution, and the reaction mixture was stirred at 60 °C for 24 h. The solvent was removed under reduced pressure, and the crude products were purified by thin-layer chromatography (EtOAc/hexane = 1:20) to give pure cycloadduct **1a** (43.1 mg, 85%). The ee was determined to be 80% by HPLC analysis using a chiral column.

 Table 3.
 [2 + 2] Cycloaddition of Alkyl-Substituted

 Propiolates
 [1]

+	CO ₂ Me	[Rh(cod)(H ₈ -binap)]E (5 mol %) 		CO ₂ Me
$entry^a$	R	time/h	yield/%	ee/%
1	Me	1	55 (1j)	99
2^b	Me	1	64 (1j)	93
3^b	Bu	2	87 (1k)	73
a 1 11 /		1/0 hm 1		1 . (0 1

^{*a*} Alkyne/norbornene is 1/2. ^{*b*} The quadruple volume of solvent (8 mL) was used (see ref 16).

slow, but the corresponding cycloadduct **1i** was obtained in moderate ee (entry 9).

We further examined alkyl-substituted propiolates as a coupling partner for norbornene (Table 3). The [2 + 2] cycloaddition of methyl but-2-ynoate proceeded under reflux conditions using Rh–H₈-BINAP catalyst to give cyclobutene **1j** with almost perfect enantioselectivity (entry 1). The [2 + 2 + 2] cycloadducts of two but-2-ynoates and norbornene, including three regioisomers, were obtained as byproducts. The diluted conditions improved the yield; however, a slight decrease in ee was observed (entry 2). Methyl hept-2-ynoate was also a substrate, and cycloadduct **1k** was obtained in higher yield with acceptable ee (entry 3).

The reaction of benzonorbornadiene required a higher temperature (Table 4). As in the case of norbornene, 3-(4methoxyphenyl)propiolate achieved higher enantioselectivity than 3-phenylpropiolate (entries 1 and 2). In the reaction of but-2-ynoate, the enantioselectivity exceeded 90% (entry 3).

In conclusion, we developed the Rh-catalyzed [2 + 2] cycloaddition of alkynyl esters and norbornene derivatives,

and various tri- and tetracyclic cyclobutenes were obtained in good to excellent yield. The chiral Rh $-H_8$ -BINAP catalyst realized moderate to high enantioselectivity. This present reaction provides a new and facile protocol for the construction of chiral cyclobutenes.

Acknowledgment. We thank Prof. H. Ishida (Faculty of Science, Okayama University) for helpful discussions. We also thank Takasago International Corp. for the gift of H₈-BINAP and SEGPHOS. This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Spectral data for cycloadducts. This material is available free of charge via the Internet at http://pubs.acs.org.

OL060055R